Coláiste Mhuire Gan Smál

- Ollscoil Luimnigh -

Mary Immaculate College

- University of Limerick -

End-of-Semester Assessment paper

Module Code: MH 4737
Module Title: Complex Analysis
Lecturer: Dr. B. Kreussler
External Examiner: Dr Sinéad Breen

Semester: Autumn 2012/2013
Duration of exam: Two hours Percentage of total marks: 75%
Authorised Materials: Calculator, Mathematical tables

Instructions to candidates: Answer three of the following five questions.

Question 1

9 marks

7 marks

9 marks

7 marks

10 marks

8 marks
0 marks
(a) Let $\gamma(t)=i+t(1-i), 0 \leq t \leq 2$, be a parametrisation of a line segment. Evaluate

$$
\int_{\gamma} z^{2} \mathrm{~d} z .
$$

(b) Use the cross-ratio to decide whether or not the four points

$$
12+6 i, \quad 4+10 i, \quad-5+13 i, \quad 18+2 i
$$

are on a circline.
(c) Determine the residue $\quad \operatorname{res}\left(\frac{2 z^{3}+3 z^{2}}{(z-3)^{2}}, 3\right)$.

Question 2

(b) Let $U \subset \mathbb{C}$ be an open set, $f: U \rightarrow \mathbb{C}$ a holomorphic function, $a \in U$ and $\bar{D}(a, r) \subset U$ a closed disc. Let $\gamma(t)=a+r e^{i t}, 0 \leq t \leq 2 \pi$, be a parametrisation of the boundary of this disc.
Prove that for all $z_{0} \in D(a, r)$ Cauchy's Integral Formula holds:

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{z-z_{0}} \mathrm{~d} z .
$$

State, without proof, any theorems, lemmas etc. you are using in your proof.
(c) Let $\gamma(t)=2 i+e^{i t}, 0 \leq t \leq 2 \pi$, be a parametrisation of the circle with centre $2 i$ and radius 1. Use Cauchy's Integral Formula to evaluate

$$
\int_{\gamma} \frac{z^{2}-4}{z\left(z^{2}+4\right)} \mathrm{d} z
$$

Question 3

9 marks

11 marks

5 marks

9 marks

10 marks

6 marks

12 marks

13 marks
12 marks
,
(a) Determine all poles and their orders of the function

$$
f(z)=\frac{z}{\left(z^{2}+1\right)^{2}\left(z^{2}+(4-2 i) z-(1+4 i)\right)} .
$$

(b) Use the generalised Cauchy Integral Formula to evaluate

$$
\int_{\gamma} \frac{1}{\left(z^{2}+1\right)^{3}} \mathrm{~d} z
$$

where $\gamma:[0,2 \pi] \rightarrow \mathbb{C}$ is given by $\gamma(t)=i+e^{i t}$.
(c) Prove that $e^{z+w}=e^{z} e^{w}$ for all $z, w \in \mathbb{C}$.

Question 4

(a) Determine the Laurent series of $f(z)=\frac{1}{(z-i)^{2}(z+2 i)}$ valid on a punctured disc centred at $z_{0}=i$.
Find the radius of the punctured disc on which your Laurent series is valid.
Write down the principal part of your Laurent series.
(b) State, without proof, the Residue Theorem and use it to evaluate the following integral in which $\gamma(t)=1+2 i+3 e^{i t}, 0 \leq t \leq 2 \pi$, parametrises the circle with centre $1+2 i$ and radius 3 .

$$
\int_{\gamma} \frac{z}{\left(z^{2}+9\right)(z-1)} \mathrm{d} z
$$

(c) Prove Liouville's Theorem:

If $f: \mathbb{C} \rightarrow \mathbb{C}$ is holomorphic and bounded, it must be constant.
State, without proof, any theorems, lemmas etc. you are using in your proof.

Question 5

(a) Find all complex numbers z for which $\sin (z)=\frac{13}{5}$. Hint: $\sin \left(\frac{\pi}{2}+k \pi\right)=(-1)^{k}$ and $\cos \left(\frac{\pi}{2}+k \pi\right)=0$ for all $k \in \mathbb{Z}$.
(b) Use the tools of complex analysis to evaluate the following integral.

$$
\int_{0}^{2 \pi} \frac{1}{61+11 \cos (x)} \mathrm{d} x
$$

